MMPretrain
Tutorials
Google Colaboratory - Image Classification with Pretrained ResNet18 on Version 1.2.0
https://colab.research.google.com/drive/1igoW8ryWYXDkcAExicaciFvHHFbscHDa
Google Colaboratory - Custom Dataset Training with ResNet18 on Version 1.2.0
https://colab.research.google.com/drive/1RkrPGyAcS0c6CH3eC07EKKwYrzm7ovlX
Custom Dataset
Getting Started
See MMDetection also for tricks and traps
Troubleshooting - GradCAM Compatibility
https://github.com/open-mmlab/mmyolo/issues/1013
python mmpretrain/tools/visualization/vis_cam.py ... ## TypeError: forward() got an unexpected keyword argument 'use_cuda'
The latest version of grad-cam 1.5.2 is not compatible by missing the 'use_cuda' argument (Confirmed 2024/07/11)
Installing version 1.3.6 as follows fixes this problem
pip install 'grad-cam==1.3.6'
Troubleshooting - CustomDataset KeyError
https://github.com/open-mmlab/mmpretrain/issues/101
python mmpretrain/tools/train.py ... ## KeyError: 'img'
dict(type='LoadImageFromFile') is necessary in pipelines if loading image data from not pickle but image files
Troubleshooting - Missing Task Definition on Inferencer
https://mmpretrain.readthedocs.io/en/stable/_modules/mmpretrain/apis/model.html#inference_model
model = get_model(config_file, pretrained=checkpoint_file, device=device) result = inference_model(model, img) ## No available inferencer for the model
metainfo.results.result.tasks needs to be defined in the model to use inference_model()
The following alternative approach is available for e.g., Image Classification
from mmpretrain.apis import ImageClassificationInferencer inferencer = ImageClassificationInferencer(config_file, pretrained=checkpoint_file, device=device) result = inferencer(img)
Training with Custom Dataset
https://mmpretrain.readthedocs.io/en/latest/user_guides/dataset_prepare.html
https://mmpretrain.readthedocs.io/en/latest/user_guides/train.html
https://mmpretrain.readthedocs.io/en/latest/notes/pretrain_custom_dataset.html
https://mmpretrain.readthedocs.io/en/latest/notes/finetune_custom_dataset.html
Information - Loss Functions
Information - Optimizers
https://pytorch.org/docs/stable/optim.html
optimizer=dict(_delete_=True) removes originally-defined parameters in dict()
Information - Freeze Parameters
https://github.com/open-mmlab/mmpretrain/blob/main/mmpretrain/models/backbones/resnet.py
- frozen_stages = -1 : not freezing any parameters
- frozen_stages = 0 : freezing the stem part only
- frozen_stages = n [n >= 1] : freezing the stem part and first n stages
Results
ResNet18
ResNet18 - Custom Dataset Training
References
https://github.com/open-mmlab/mmpretrain
https://mmpretrain.readthedocs.io/
https://github.com/open-mmlab/mmpretrain/issues/1474
https://www.kkaneko.jp/ai/win/mmclassification.html
https://www.kaggle.com/code/haoqingsong/brain-tumo-classification-swinv2-accuracy-100
Acknowledgments
Daiphys is a professional-service company for research and development of leading-edge technologies in science and engineering.
Get started accelerating your business through our deep expertise in R&D with AI, quantum computing, and space development; please get in touch with Daiphys today!
Daiphys Technologies LLC - https://www.daiphys.com/