Eddington Limit
Basics
質量から求まる
それ以上に明るくなると輻射圧で星の大気が飛ばされてしまう
恒常的に限界より明るいケースは難しいがトランジェントなら問題ない
重力と輻射圧の釣り合い
( $\Sigma_{T}$ / $c$ )( $L_{edd}$ / 4$\pi{}r^{2}$ ) = $GMm_{H}$ / $r^{2}$
- $\Sigma_{T}$ = トムソン断面積 = 6.65e-25
- $m_{H}$ = 水素の質量
- $c$ = 光速
$L_{edd}$ = 4$\pi{}cGM$ / $k_{T}$
- $k_{T}$ = トムソン散乱によるOpacity不透明度 = 0.4 cm^2/g
$L_{edd}$ = ( 4$\pi{}c^{3}$ / $k_{T}$ )( $GM_{\odot}$ $/$ $c^2$ )( $M$ $/$ $M_{\odot}$ ) = 1.3 $\times$ 10$^{38}$ ( $M$ $/$ $M_{\odot}$ ) [erg/s]
Acknowledgments
Daiphys is a professional-service company for research and development of leading-edge technologies in science and engineering.
Get started accelerating your business through our deep expertise in R&D with AI, quantum computing, and space development; please get in touch with Daiphys today!
Daiphys Technologies LLC - https://www.daiphys.com/